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Layout of the presentation

• Formulation of atmospheric Inverse Models

• Criteria for assessing inverse models

• Choices that impact  inverse models

• Types of prior covariance used in inverse models

• The phenomenon for which prior covariance needs to be 

defined

• Role of prior covariance in inverse output

• Case Studies: 

• Regional: North America

• Urban: Los Angeles



Statistical Approach to Atmospheric Inversions



Atmospheric Inversions: Components of (linear) 

Statistical Model

𝐿𝐬,𝛃 =
1

2
𝐳 − 𝐇𝐬 T𝐑−1 𝐳 − 𝐇𝐬 +

1

2
𝐬 − 𝐬𝑝

T𝐐−1 𝐬 − 𝐬𝑝
(1)

CO2 Observations

R

Measurement

Error Covariance 

Q

Prior 

Covariance 

Transport Model

500 1000 1500 2000 2500

500

1000

1500

2000

2500

CO2 

Emissions

FF Fluxes



Flavors of Atmospheric (linear) Inverse Models
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Criteria for assessing an inverse model (other than Uncertainty Reduction)
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Hat Matrix and Cross Validation

Averaging Kernel Matrix
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Criteria for assessing an inverse model: Examples

Averaging Kernel

Correlation and RMSE



Sensitivity Analysis 

• How to determine which factor played most important role in

influencing estimates of fluxes ?

• There are multiple ways to do this but partial derivatives provide a

complete framework to do this.
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Importance of Prior Covariance Matrix



Impact of Prior Covariance (North America Example)

𝐐 = 𝜎2 exp
−𝒅𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
⨂exp

−𝒅𝑠𝑝𝑎𝑡𝑖𝑎𝑙
𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙

(10)

𝐐 = 𝑎
𝑘1 0 0
0 . 0
0 0 𝑘𝑟

+ 𝑏
1 0 0
0 . 0
0 0 1

(11)

Separable Exponential Space-Time

Spatially dependent error variance

Assessment: BIC

𝐵𝐼𝐶 = 𝑅𝑆𝑆 + ln| 𝐇𝐐𝐇𝑇 + 𝐑 −1|
𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

+ 𝑝 ln (𝑛)
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡𝑒𝑟𝑚

(12)



Impact of Prior Covariance (North America Example II)
Details of the Case Study:

• Inversion Area: North America

• Inversion Time Period: 2008

• Resolution: 3-Hourly, 1o x 1o

• Observations: 35 in-situ towers

• Simulation Study: True Fluxes were known

• Prior Covariance Assessed: 

1. Night Lights

2. Population Density

3. Urban Area

4. FF Inventory

5. Separable Exponential Covariance 

Results:

• FF Inventory based covariance considerably better 

than other covariance structures

A. Study Area and In-Situ Towers

B. Flux Aggregation Area

C. Results from the case study

(A) (B)

(C)

Yadav et. al. (JGR-Atmospheres 2016)



Impact of Prior Covariance (North America Example III)

Work in Progress: Estimating Fossil Fuel Emissions By Using Twitter Feeds



Observations to Fluxes: Why is prior covariance so 

important in urban areas (Example from Los Angeles)



Distribution of Methane Emitting 

Infrastructure

Hourly Carbon dioxide emissions from 

Los Angeles

Observations to Fluxes: Why is prior covariance so 

important in urban areas (Example from Los Angeles) II



Observations to Fluxes: Why is prior covariance so 

important in urban areas (Example from Los Angeles) III



Behavior of different covariance formulations

Details of the Case Study:

• Inversion Area: Los Angeles

• Inversion Time Period: 2015

• Resolution: 4-day, 3km

• Observations: 6 in-situ towers

• Real data Study:

• Prior Covariance Assessed: 

1. FF Inventory (diagonal)

2. Separable Exponential Covariance 

3. Temporal correlation and diagonal spatial

Results

• Correlation length in Space is non present

• Correlation length is considerably larger in time



Conclusions and Future Steps

• Implement proposed covariance structures for estimating fluxes
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• Include observations from multiple instruments

• Perform sensitivity analysis

• Use real time social media to better define temporal covariance model


